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ABSTRACT
Users form information trails as they checkin with a geolocation,

rate items, or consumemedia. A common problem is to predict what

a user might do next for the purposes of guidance, recommendation,

or prefetching. Markov chains models have been widely used meth-

ods to study such sequences of data. First-order Markov chains are

easy to estimate, but lack accuracy when history matters. Higher-

order Markov chains, in contrast, have too many parameters and

suffer from overfitting the training data. Fitting these parameters

with regularization and smoothing only offers mild improvements.

In this paper we propose the retrospective higher-order Markov

process (RHOMP) as a low-parameter model for such sequences.

This model is a special case of a higher-order Markov chain where

the transitions depend retrospectively on a single history state in-

stead of an arbitrary combination of history states. There are two

immediate computational advantages: the number of parameters is

linear in the order of the Markov chain and the model can be fit to

large state spaces. Furthermore, by providing a specific structure to

the higher-order chain, RHOMPs improve the model accuracy by

efficiently utilizing history states without risks of overfitting the

data. We demonstrate how to estimate a RHOMP from data and

we demonstrate the effectiveness of our method on various real

application datasets spanning geolocation data, review sequences,

and business locations. The RHOMP model uniformly outperforms

higher-order Markov chains, Kneser-Ney regularization, and tensor

factorizations in terms of prediction accuracy.
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1 INTRODUCTION
User trails record sequences of activities when individuals inter-

act with the Internet and the world. Such data come from various

applications when users write a product review [25], checkin at a

physical location [13, 42], visit a webpage, or listen to a song [8].

Understanding the properties and predictability of these data helps

improve many downstream applications including overall user ex-

periences, recommendations, and advertising [1, 19]. We study the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’17, August 13-17, 2017, Halifax, NS, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4887-4/17/08. . . $15.00

https://doi.org/10.1145/3097983.3098127

prediction problem and our goal is to estimate a model to describe

and predict a set of user trails.

Markov chains are one of the most commonly studied models

for this type of data. For these models, each checkin place, website,

or song is a state. Users transition among these states following

Markov rules. In a first-order Markovmodel, the transition behavior

to the next state of the sequence only depends on the current state.

Higher-order Markov models include a more-realistic dependence

on a larger number of previous states, and multiple recent studies

found that first-order Markov chains do not fully capture the user

behaviors in web browsing, transportation and communication

networks [12, 32]. Furthermore, ignoring the effects of second-

order Markov dynamics has significant negative consequences for

downstream applications including community detection, ranking,

and information spreading [2, 32].

The downside to higher-order Markov models is that the number

of parameters grows exponentially with the order. (If there are N
states and wemodelm steps of history, there areNm+1

parameters.)

So, even if we could accurately learn the parameters, it is already

challenging to even store them. (Some practical techniques include

low-rank and sparse approximations, but these pose their own prob-

lems.) Second, since the number of model parameters grows rapidly,

the amount of training data required also grows exponentially with

the orderm [12]. Acquiring such a large volume of training data is

usually impossible. Lastly, determining the amount of history to use

itself is hard [27], and selecting a large value ofm could severely

overfit the data, thus making the learned model less reliable.

One strategy to address these limitations of higher-order Markov

chains is a variable order Markov chain [6] where the relevant

history length changes among states. There is a fitting algorithm

that can automatically determine an appropriate order for each

state, however it requires substantial computation time [31] which

restricts it to applications with only a small number of states [5, 12,

14].

Smoothing and regularization methods [11] like Kneser-Ney

smoothing and Witten-Bell smoothing are additional approaches to

make the higher-order Markov chain more robust. These methods

are widely applied in language models for predicting unseen tran-

sitions. We will compare against the behavior of the Kneser-Ney

smoothing in our experiments and show that our method has a

number of advantages.

In this paper we propose the retrospective higher-order Markov

process (RHOMP) as a simplified, special case of a higher-order

Markov chain (Section 3). In this type of Markov model, the pro-

cess retrospectively choses a state from the pastm steps of history,

and then transitions as a first-order chain conditional on that state

from history. This assumption helps to restrict the total number

of parameters and protect the model from overfitting the correla-

tions between history states. Specifically, this model corresponds to
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choosingm different first order Markov chain transition matrices,

one for each step of history, as well as an associated probability dis-

tribution. Consequently, the number of parameters grows linearly

with the size of history while preserving the higher-order nature.

We also show there are important connections between our model

and the class of pairwise-interaction tensor factorization models

proposed by Rendle et al. [29, 30] (Section 3.2).

We design an algorithm to select an optimal model from training

data via maximum likelihood estimation (MLE). For the second-

order case with two steps of history, this yields a constrained convex

optimization problem with a single hyperparameter α . We derive

a projected gradient descent [16] algorithm to solve it. It requires

only a few iterations to converge and each iteration is linear in the

training data. We select the hyperparameter by fitting a polynomial

to the likelihood function as a function of the parameter and select

the global minimum. Thus, our RHOMP process does not require

any parameter tuning and is scalable to applications with tens of

thousands of states. In addition, both the process of updating the

gradients and model parameters parallelize over the training data.

We evaluate the effectiveness of RHOMP models in experiments

with real datasets including product reviews, online music stream-

ing, photo locations, and checkin business types (Section 5.1). We

primarily compare algorithms in terms of their ability to predict in-

formation from testing data and use accuracy and mean reciprocal

rank as the two main evaluation metrics. These experiments and

results show that the RHOMP model achieves superior prediction

results in all datasets (Section 5.2) compared with first and second

order chains. For even higher-order chains, RHOMP shows stable

performance with one exception (Section 5.4) where the data only

has short sequences.

Code and data for this paper are available at: https://github.com/

wutao27/RHOMP.

Remark. Recently Kumar et al. [22] proposed the Linear Addi-

tive Markov Process (LAMP) that is closely related to our frame-

work. Specifically, our RHOMPmodel is the same as the generalized

LAMP (GLAMP) model from that reference. We learned about this

paper after our submission to KDD. The papers share a number of

related technical results about the models, and we discovered the

related work [24, 26, 39, 43] based on their manuscript. The main

difference is that in this paper we focus on the general form that

allows to learn different Markov chains for each step of history. In

addition we connect the RHOMP model with a particular tensor

factorization to a higher-order Markov chain.

2 PRELIMINARIES
We begin by formally reviewing the problem of user trail prediction.

Then we will review relevant background on Markov chain models.

2.1 Problem Formulation
We denote a user trail as a sequence over a discrete state space

s = (s1,s2, · · · ) with each element si ∈ {1,2, · · · ,N }. Here N is the

total number of states. The sequence can represent, for instance, a

user’s music listening history with each state denoting a song/artist,

or a user’s checkin history from social network with each state

denoting a location. Given a specific user trail up to time t − 1:

s = (s1,s2, · · · ,st−1) with t ≥ 2, the task is to predict the next

state at time t based on a large set of user trails for training: S =

{s (1) ,s (2) , · · · }, where each s (i ) is an individual trail.

2.2 Markov Chain Methods
An m−th order Markov chain is defined as a stochastic process

{Xt ,t = 1,2, · · · } on the state space: {1,2, · · · ,N } with the property

that the next transition only depends on the lastm steps. Formally,

Pr

(
Xt = i | Xt−1 = it−1, · · · ,X1 = i1

)
= Pr

(
Xt = i | Xt−1 = it−1, · · · ,Xt−m = it−m

)
.

An (m + 1)-order transition tensor P with size N characterizes

the above Markov chain, with Pi,j, · · · ,k denoting the probability of

transitioning to state i given them current history states (j, · · · ,k ).
The model withm = 1 is called the first-order Markov chain and

similarly it can be described by an N × N transition matrix P .
In order to use a Markov chain for the prediction problem, we

need to estimate the transition matrix P . Given a set of users trails

S = {s (1) ,s (2) , · · · }, the maximum likelihood estimator (MLE) of

the probability Pi,j for a first order chain is given by [12]:

Pi,j =
c (i, j )∑
ℓ c (ℓ, j )

where c (i, j ) denotes the number of instances where the states j
and i were consecutive in all trails. For the case of higher-order

Markov chain, it is well-known that any higher-order (m > 1)

Markov chain Xt is equivalent to a first-order Markov chain Zt by
taking a Cartesian product of its state space. This simplifies the

parameter estimations and we may replace the original states with

the Cartesian product states:

Pi,j, · · · ,k =
c (i, j, · · · ,k )∑
ℓ c (ℓ, j, · · · ,k )

,

where now c (i, j, · · · ,k ) counts the number of instances of the

sequence k, · · · , j,i in the training data.

Returning to the prediction task itself, Markov chain methods

take as input the history states of a trail and lookup the probabilities

for all future states in the matrix P or tensor P . This becomes a

ranked list of states with the highest probability on top.

3 RETROSPECTIVE HIGHER-ORDER
MARKOV PROCESSES

The goal of the retrospective higher-orderMarkov process (RHOMP)

is to strike a balance between the simplicity of the first order

Markov model and the high-parameter complexity of the higher-

order Markov model. Nevertheless, it is important for the model to

account for higher-order behaviors because these are necessary to

capture many types of user behaviors [12, 32]. Towards that end, the

RHOMP model describes a structured higher-order Markov chain

that results in a compact low-parameter description of possible user

behaviors. We describe this formally for the case of a second-order

history (and discuss largely notational extensions to higher-order

chains in Section 3.4).

3.1 The Retrospective Process
The specific structure that a RHOMP describes is a retrospectively

first-order Markov property. For some intuition, suppose that a web
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Figure 1: An illustration of Markov chain methods and our
proposed RHOMP model.

surfer had visited a search-query result page and then clicked the

first link. In the RHOMP model, the user will first determine if they

are going to continue browsing from the search-result page or the

first link—hence users have the power to retrospect over history.

Once that decision has been made, the user will behave in a first-

order Markovian fashion that depends on if the user returned to the
previous state or remained on the current state. Formally, suppose

that the chain has recently visited states j and k . The RHOMP is

a two-stage process that first selects a single history state. Since

there are only two states, we model this selection as a weighted

coin-toss where the probability of picking j is α and so picking k
happens with probability 1 − α . Once we have the history state,

then the RHOMP transitions according to a transition matrix that

is specific to that step of the history. Thus

Pr

(
Xt = i | Xt−1 = j,Xt−2 = k

)
= αRi,j + (1 − α )Qi,k ,

where R models the transitions from the current state (when those

are selected) andQ models the transitions from the previous state

(when those are selected). See Figure 1 for illustration. We summa-

rize this in the following definition:

Definition 3.1. Given 0 ≤ α ≤ 1 and two stochastic matrices

R,Q , a second-order retrospective higher-order Markov process

will transition from state j with history state k as follows: (i) with

probability α it transitions according to R with the current state j,
and (ii) with probability 1 − α it transitions according to Q with

the previous state k .

Thismodel has a number of useful features. For instance, it is easy

to compute the stationary distribution as the following theorem

shows.

Theorem 3.2. Let α ,R,Q be a second-order RHOMP model. Con-
sider the stationary distribution x in terms of the long-term fraction
of time the process spends in a state:

xi = lim

t→∞

number of times Xt = i
t

for each i = 1 . . .N .

Such a distribution x always exists. Moreover, it is unique if αR + (1−
α )Q is an irreducible matrix.

Proof. Because the RHOMP is a special case of a second-order

chain, we can use the relationship with the first-order chain on the

Cartesian product space to establish that a distribution x always ex-

ists. This follows because the long-term distribution of a first-order,

finite-state space Markov chain always exists (though there could

be multiple such distributions) [37]. Let Xi,j for all 1 ≤ i, j ≤ N be

any limiting distribution of the product state space, and x be either

of the corresponding marginal distribution such that

∑
j X j,k = xk

or

∑
k X j,k = x j . Note that both of these marginals result in the

same distribution because we use the long time average to define

Xi,j . Then we have:

xi =
∑
j
Xi,j =

∑
j

∑
k

(αRi,j + (1 − α )Qi,k )X j,k

=
∑
j
αRi,jx j +

∑
k

(1 − α )Qi,kxk = (Px)i

where P is defined as αR + (1 − α )Q . So the limiting distribution x
follows x = Px, and it is unique if the corresponding Markov chain

P is irreducible. □

In Section 3.3, we show how to compute a maximum likelihood

estimate of R andQ from data.

3.2 A Tensor Factorization Perspective
We originally derived this type of RHOMP via a tensor factorization

approach, but then realized that the retrospective interpretation is

more direct and helpful. Nevertheless, we believe there are fruitful

connections established by the tensor factorization approach. Con-

sider the transition tensor of a second-order Markov chain: P is a

3-mode, N × N × N , non-negative tensor such that∑
i
Pi,j,k = 1 for all 1 ≤ j,k ≤ N .

(1)

This imposes a set of N 2
equality constraints. If we wanted to use

traditional low-rank tensor approximations such as PARAFAC or

Tucker [21] to study large datasets, then we would need to add a

large number of constraints to the fitting algorithms in order to

ensure that the factorization results in a stochastic tensor that we

could use for a second order Markov chain. This approach was

extremely challenging.

Instead, consider a pairwise interaction tensor factorization

(PITF) as proposed by Rendle et al. [30] with the following form:

Pi,j,k =
∑
ℓ

A
(J )
i,ℓB

(I )
j,ℓ +

∑
ℓ

A
(K )
i,ℓ C

(I )
k,ℓ +

∑
ℓ

B
(K )
j,ℓ C

(J )
k,ℓ (2)

where matricesA(J ) ,A(K ) ,B (I ) ,B (K ) ,C (I ) ,C (J ) ∈ RN×k . We notice

that last term in (2) is the interaction between the current state j and
the previous state k , and it contributes only a constant determined

by the pair (j,k ). In the applications of prediction, we can drop this

term because it does not affect the relative ranking for the future

state i . So the factorization model becomes:

Pi,j,k =
∑
ℓ

A
(J )
i,ℓBj,ℓ +

∑
ℓ

A
(K )
i,ℓ Ck,ℓ (3)

with A(J ) ,A(K ) ,B,C ∈ RN×k .
To see the relationship with our RHOMPs, denote α̃ ˜R = A(J )B⊺

and (1 − α̃ ) ˜Q = A(K )C⊺ with 0 ≤ α̃ ≤ 1. Then the result of a PITF

factorization with stochastic constraints is:

Pi,j,k = α̃R̃i,j + (1 − α̃ )Q̃i,k (4)



It is easy to verify that if both
˜R and

˜Q are stochastic matrices, then

the corresponding tensor P is a transition tensor following (1). The

following theorem shows that from any nonnegative
˜R and

˜Q , we

can construct such stochastic matrices.

Theorem 3.3. Assuming there exist nonnegative matrices ˜R and
˜Q such that the transition tensor P can be decomposed in the form of
(4), then there exist 0 ≤ α ≤ 1 and stochastic matrices R,Q such that
Pi,j,k = αRi,j + (1 − α )Qi,k .

Proof. Denote

∑
i R̃i,j = r̃ j and

∑
i Q̃i,k = q̃k for all 1 ≤ j,k ≤

N . Because 1 =
∑
i Pi,j,k = α̃ r̃ j + (1 − α̃ )q̃k for all 1 ≤ j,k ≤ N , we

have r̃1 = r̃2 = · · · = r̃N = r̃ ≥ 0, q̃1 = q̃2 = · · · = q̃N = q̃ ≥ 0 and

α̃ r̃ + (1 − α̃ )q̃ = 1. If r̃ = 1,q̃ = 1 then the original matrices
˜R and

˜Q are stochastic. Otherwise we can set

α = α̃ r̃ ; R = ˜R/r̃ ; Q = ˜Q/q̃

where R andQ are stochastic. Then we have

αRi,j + (1 − α )Qi,k = α̃R̃i,j +
(1 − α̃ r̃ )Q̃i,k

q̃

= α̃R̃i,j + (1 − α̃ )Q̃i,k = Pi,j,k

So (α ,R,Q ) forms a valid factorization for P , the bound on α follows

from α̃ r̃ + (1 − α̃ )q̃ = 1 from (4). □

Consequently, the RHOMP form also arises from the PITF ap-

proach when constrained to model stochastic tensors.

3.3 Parameter Optimization
In this section we will apply the principle of maximum likelihood

to estimate the model parameters of a RHOMP (i.e., R,Q) directly

from data. An alternative would be to estimate the higher-order

Markov chain and use the PITF factorization as discussed in the

previous section. Working directly on the RHOMP model from data

has two advantages: first, the estimate corresponds exactly with

the model, rather than estimate and approximate; and second, the

direct approach is faster.

We first show how to compute a maximum likelihood estimate

with α fixed and then discuss how to pick α . Recall that c (i, j,k )
is the total count of transitions moving from j to i with previous

state k in the training data. With fixed α , the log likelihood of all

transitions from the set S of user trails is:

logL (R,Q | S) =
∑

c (i,j,k )>0

c (i, j,k ) log(Pi,j,k )

=
∑

c (i,j,k )>0

c (i, j,k ) log(αRi,j + (1 − α )Qi,k )
(5)

Our goal is to find a pair of stochastic matrices R,Q which min-

imizes the negative log likelihood, which gives us the following

optimization problem:

minimize

R,Q
− logL (R,Q | S)

subject to Ri,j ≥ 0, Qi,j ≥ 0 1 ≤ i, j ≤ N∑
i Ri,j = 1,

∑
i Qi,k = 1 1 ≤ i ≤ N

(6)

This optimization problem is convex as the following theorem

shows.

Theorem 3.4. The negation of the log likelihood function in (5)

is convex and so is the feasible region of pairs of stochastic matrices.
Thus any local minima solution (R∗,Q∗) is also the solution for global
mimima.

Proof. First we verify the feasible domain of stochastic pairs

(R,Q ) is convex. We can check that given 0 ≤ λ ≤ 1 and two

stochastic matrices A,B, the linear combination λA + (1 − λ)B is

also a stochastic matrix. This applies element-wise to the pair to

verify the claim.

Nowgiven two sets of stochasticmatrices (R (1) ,Q (1) ) and (R (2) ,Q (2) )

and the corresponding linear combination (R = λR (1)+(1−λ)R (2) ,Q =
λQ (1) + (1 − λ)Q (2) ) we have

− logL (R,Q | S) = −
∑
i,j,k

c (i, j,k ) log(αRi,j + (1 − α )Qi,k )

= −
∑
i,j,k

c (i, j,k ) log
(
λ(αR

(1)
i,j + (1 − α )Q

(1)
i,k )

+ (1 − λ) (αR
(2)
i,j + (1 − α )Q

(2)
i,k )
)

≤ −
∑
i,j,k

c (i, j,k )
(
λ log(αR

(1)
i,j + (1 − α )Q

(1)
i,k )

+ (1 − λ) log(αR
(2)
i,j + (1 − α )Q

(2)
i,k )
)

= −λ logL (R (1) ,Q (1) | S) − (1 − λ) logL (R (2) ,Q (2) | S),

where the inequality is from the fact that − log is a convex function.

So (6) is a convex problem. □

We now derive the projected gradient descent algorithm for (6),

which is summarized in Algorithm 1. This involves

(1) First update R andQ based on their gradients.

(2) Since R and Q are no longer stochastic due to the above

updates, the projection step is applied to project the updated

R andQ back to ℓ1 − balls (i.e., the stochastic property).

The gradients over R andQ are:

∇Ri,j =
−∂ logL

∂Ri,j
=
∑
k

−αc (i, j,k )

αRi,j + (1 − α )Qi,k

∇Qi,k =
−∂ logL

∂Qi,k
=
∑
j

−(1 − α )c (i, j,k )

αRi,j + (1 − α )Qi,k

(7)

We accomplish the projection step using the algorithm from [16].

Note that for the sake of simplicity we present the projection step

by sorting each column vector w from R andQ , but there is a more

efficient method based on divide and conquer [16] which is linear

cost to the number non-zeros in w. However in practice sorting w
is fast as the vector w is very sparse.

Overall each iteration takes linear time in the number of unique

triples (i, j,k ) in the sequence data. This is upper bounded by the

size of input data. We also note that the procedure of computing the

gradients ∇R,∇Q and updating R,Q , which dominates the majority

of the computation, can be paralleled.

Choosing α . To determine the value of hyperparameter α , we
conduct a few trials with α chosen between (0,1). Then based on

the value of the objective function, we calculate the best value of

α from a polynomial interpolation of the likelihood function. Get-

ting the global minimum of a polynomial interpolant can be done



Algorithm 1Max. Likelihood Estimate of a 2nd-order RHOMP

Require: parameter α , step size γ0 and transition counts c (i, j,k )
1: Initialize R with Ri,j =

∑
k c (i, j,k )/

∑
ℓ,k c (ℓ, j,k ), Q with

Qi,k =
∑
j c (i, j,k )/

∑
ℓ,j c (ℓ, j,k ) and γ = γ0

2: repeat
3: Compute the gradient matrices ∇R,∇Q based on (7)

4: R ← (R − γ∇R) andQ ← (Q − γ∇Q )
5: for each column vector w of R andQ do
6: Sort the non-zeros of w into u: u1 ≥ u2 ≥ · · · ≥ uk > 0

7: Find ρ = max

{
r ≤ k : ur −

1

r (
∑r
i=1 ui − 1) > 0

}

8: Define θ = 1

ρ (
∑ρ
i=1 ui − 1)

9: Update w withwi ← max{wi − θ ,0}
10: end for
11: if objective value decreases then
12: γ ← min{2 ∗ γ ,γ0}
13: else
14: γ ← 0.5 ∗ γ ; re-run this iteration with the updated γ
15: end if
16: until converge

efficiently, and polynomials can approximate arbitrary continuous

functions, which renders this a pragmatic choice. Specifically we

use n Chebyshev nodes as the values of α to fit the interpolant:

αk =
1

2
+ 1

2
cos( 2k−1

2n π ), k = 1,2, · · · ,n. Chebyshev nodes cluster

towards the endpoints of (0,1), which avoids Runge phenomenon,

and also admit simple and numerically stable polynomial interpola-

tion algorithms.

Another approach for selecting the value of α is to conduct cross

validation with grid search. However a different objective is needed

as we could run into unseen transitions in the validation set and the

likelihoodwould go to−∞. Alternatively we can use ameasurement

like accuracy instead of likelihood. The main advantage of cross

validation is its ability to prevent overfitting. In our experiment we

find this problem does not occur, so we drop this procedure as it

requires substantially more computation.

3.4 Higher-order Cases Beyond Second Order
The ideas discussed in the above sections also work for the higher-

order cases withm ≥ 3. The RHOMP model becomes:

Pr(Xt = i |Xt−1=j,Xt−2=k, ...,Xt−m=ℓ) = α1R
(1)
i,j +α2R

(2)
i,k+· · ·+αmR

(m)
i,ℓ

where 0 ≤ αi ≤ 1 for i = 1,2, · · · ,m,

∑
i αi = 1 and matrices

R (i )
for i = 1,2, · · · ,m are stochastic. Similarly, the log likelihood

function can be derived as well as the gradient over each R (i )
. The

projected gradient descent algorithm is then applied to update each

stochastic matrix R (i )
, with a per-iteration complexity bounded by

the size of the training data.

The biggest difference is that we are no longer able to determine

the hyperparameters αi in a simple fashion as the polynomial inter-

polation is only computationally efficient for one or two parameters.

To address this issue, recall that in Section 3.1 we proposed the

model as a retrospective walk, where the walker has probability

αk to step back k − 1 steps into their history and then transition

according to R (k )
. Our proposal is to use a single hyperparameter

β < 1 to model a decaying probability of looking back into the

history:

α1 =
1−β
1−βm , α2 = β

1−β
1−βm , . . . , αm = βm−1

1−β
1−βm .

(This distribution describes a truncated geometric random vari-

able.) In our experiments for the second-order case the optimal

α1 > 1/2 for every dataset. This offers a single step of evidence

for this assumption. This β can be chosen either by the procedure

of polynomial interpolation or simply using the optimal value α∗

from a second-order factorization model β = α∗/(1−α∗). We apply

the latter approach in our experiments for RHOMP withm > 2.

3.5 Relationship with the Linear Additive
Markov Process

Our RHOMP model was also proposed as the generalized Linear

Additive Markov Process [22] as discussed in the introduction. By

way of comparison, the Linear Additive Markov process, which

constituted the bulk of [22], corresponds to RHOMP where R = Q ,

or a higher-order RHOMP where R (1) = R (2) = · · · = R (m)
. There

are additional algorithmic properties of these models shown in that

reference, including results on the mixing time and an alternating

fitting procedure.

4 RELATEDWORK
Modeling User Trails. Early work in [28] characterized the user

path patterns on the web with the tools of Markov chains. Other

advancedmethods include hiddenMarkovmodels (HMM) [17], vari-

able length Markov chains [6] and association rules [1]. However

the computations associated with the above methods limit them

from being used in datasets with more than a few thousand states.

More recent work considers the sequence prediction task with per-

sonalization, such as collaborative filtering methods [23, 33, 35]

where the behavior of similar users is utilized to help the predic-

tion, factorizing personalized Markov chains [29], TribeFlow [19]

and recurrent processes [15]. In addition to the prediction problem,

clustering and visualization [7], sequence classification [41], metric

embedding [9, 10, 18] and hypotheses comparison [36] have also

been studied. In the context of this work, we seek to improve the

performance of the classic and simple Markov model by studying a

structured variation.

RandomWalk Models. Since our model is a special case of a

higher-order Markov chain, we note that there are relationships

with a variety of enhancedMarkov models. First our RHOMPmodel

defines a specific form of the Additive Markov Process (AMP) [24],

where the transition probability is a summation of a series of

memory functions that are restricted on the next state and one

history state each. Applications of the AMP include LAMP [22]

(see Section 1, 3.5), the gravity models [43], dynamical systems in

physics [26, 39] where the memory function is empirically esti-

mated for the application of binary state, and the mixed memory

models [34] for language modeling where EM algorithms are ap-

plied to solve the mixture model parameters. In addition to the

AMP, recent innovations include new recovery results on mixture

of Markov chains [20] (a special case of HMM), which assumes

a small set of Markov chains that model various classes of latent

indent; and the spacey random walk [3, 4, 40] as a non-Markovian



stochastic process that utilizes higher-order information based on

the empirical occupation of states.

Tensor Factorization. As already discussed, our work is di-

rectly related to the pairwise interaction tensor factorization (PITF)

method proposed by Rendle in [29, 30], where the task is to generate

tag recommendations given the {user, item} combination. The PITF

model is learned from a binary tensor of triple {user, item, tag} by
bootstrap sampling from pairwise ranking constrains. Our work dif-

fers in the aspect of problem formulation, model construction and

parameter optimization. The RHOMP model is also a special case

of both the canonical/PARAFAC and Tucker decompositions [21].

5 EXPERIMENTS
We evaluate our RHOMP method on the ability to predict subse-

quent states in a user trail in terms of accuracy and mean reciprocal

rank (MRR) on five different types of data (Section 5.1). We then

present the results of a second-order (i.e., m = 2) RHOMP com-

pared with baseline methods in Section 5.2 and study over-fitting

of the training data in Section 5.3. Then we study what happens

for higher-order (i.e., m > 2) models in Section 5.4. In all cases,

the RHOMP model offers a considerable improvement to existing

methods.

5.1 Datasets and Evaluations Setup
The real datasets we use in our experiments cover several applica-

tions including: product reviews, online music streaming, checkin

locations of social networks and photo uploads. Every dataset is

publicly available. For all the datasets, self-loops are removed as

we are mostly interested in predicting a non-trivial transition. Also

we only consider states that show up more than 20 times. Simple

statistics on each dataset are summarized in Table 1, and we now

describe them individually.

LastFM [8] is a music streaming and recommendation website

(last.fm). We generate user trails as listening histories regarding

different artists over a one-year period (2008-05-01 to 2009-05-01).

BeerAdvocate [25] consists of beer reviews spanningmore than

10 years up to November 2011 from beeradvocate.com. We study

the user trail as reviews over different brewers.

BrightKite [13] was a location-based social networking website
where users shared their locations by checking-in. We study the

trails of location id.

Flickr [38] contains 100 million Flickr photos/videos provided

by Yahoo! Webscope. We extract the user trail based on geolocation

(restricted to USA) of each upload after 2008-01-01. Each longitude

Table 1: Dataset characteristics in terms of the number of
states, transitions and trails

# states # transitions # trails

LastFM 17,341 2,902,035 195,499

BeerAdvocate 2,324 1,348,903 35,629

BrightKite 11,465 400,340 125,437

Flickr 7,608 1,212,674 97,563

FourSQ 344 198,503 1,480

and latitude is mapped into a grid of approximate 10km by 10km,

which constitutes the state.

FourSQ is a location based check-in dataset created by Yang

et al [42] which contains checkins from New York City from 24

October 2011 to 20 February 2012.We extract checkin place category

(e.g., bus station, hotel, bank) as state.

For experimental methods, we consider the following:

MC1, MC2 are the first-order and second-order Markov chain

methods respectively, where the transition matrix is estimated

based on maximum likelihood.

Kneser1, Kneser2 are the interpolated Kneser-Ney smoothing

methods [11] applied on the first-order and second-order Markov

chain methods respectively. This is one of the best smoothing meth-

ods for n-gram language models, where it enables higher-order

Markov chain transitions to unseen n-grams. We set the discount-

ing parameter asn1/(n1+2n2) by themethod of leaving one out [11],

where n1 and n2 denote the number of n-grams that appear exactly

once and twice respectively

PITF is the pairwise interaction tensor factorizationmethod [30]

computed on the higher-order Markov chain estimate. Because we

use ranking, we consider general positive and negative entries as

valid for the factorization. We implement the fitting method our-

selves to handle the sparsity in our data. We tune the regularization

parameter λ during training. They are 5 · 10−5 for LastFM, 1 · 10−5

for BeerAdvocate, and 3 · 10−4 for the other three datasets. We set

the rank number k as 5% of the total number of states, which is

enough to accurately capture the user behavior [30]. For SGD opti-

mization we set the learning rate α = 0.05, initialization N (0,0.01)
and number of iterations as 10,000,000.

LME is short for Latent Markov Embedding [9]. It is a machine

learning algorithm that embeds states into Euclidean space based on

a regularized maximum likelihood principle. We set the dimension

d = 50 and use default values for all other parameters (e.g., learning

rate, epsilon). (We tried various values of d spanning from 2 to 100,

we find as d increases the performance also gets better, for d > 50

the improvements are negligible. So we use d = 50 to make the

algorithm efficient.) We use the authors’ implementations.

RHOMP is our proposed method in this paper. We use initial

step size as γ0 = 1, and set ε = 10
−5

as the algorithm termination

criterion when the relative improvement over log likelihood is be-

low this point. For the hyperparameter α we use n = 15 Chebyshev

nodes for the interpolation.

The datasets are randomly split into a training set (60%) and

testing set (40%) based on keeping whole trails together. And for

each dataset we conduct experiments over 5 random repetitions

and present the average results. For evaluations we use accuracy

over top k outputs to measure the accuracy of each method. It is

calculated over all individual transitions in the testing set as

accuracyk =
# true transitions within top k algorithmic results

# total transitions

.

Besides accuracy, which measures the accuracy of the top outputs

from algorithms, we also provide results on Mean Reciprocal Rank

(MRR). The reciprocal rank of an output is the inverse of the rank

of the ground truth answer and MRR measures the overall ranking

compared to the groundtruth. For both measures, we want large

scores close to 1.

last.fm
beeradvocate.com


Table 2: Mean Reciprocal Rank (MRR) results of various methods on all datasets. Bold indicates the best mean performance,
and ± entries are the standard deviations over 5 trials. Our proposed RHOMP (m = 2) has the best performance in all datasets.

MC1 MC2 Kneser1 Kneser2 PITF LME RHOMP

LastFM 0.071 ± 0.001 0.068 ± 0.001 0.066 ± 0.001 0.090 ± 0.002 0.060 ± 0.001 0.062 ± 0.001 0.100 ± 0.001
BeerAdvocate 0.080 ± 0.000 0.034 ± 0.001 0.079 ± 0.000 0.076 ± 0.001 0.068 ± 0.002 0.067 ± 0.001 0.090 ± 0.000
BrightKite 0.551 ± 0.002 0.540 ± 0.002 0.554 ± 0.002 0.599 ± 0.002 0.444 ± 0.007 0.529 ± 0.002 0.603 ± 0.002
Flickr 0.358 ± 0.003 0.306 ± 0.004 0.350 ± 0.001 0.379 ± 0.001 0.315 ± 0.004 0.333 ± 0.003 0.410 ± 0.001
FourSQ 0.138 ± 0.004 0.092 ± 0.003 0.146 ± 0.005 0.155 ± 0.004 0.126 ± 0.003 0.113 ± 0.002 0.181 ± 0.003
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Figure 2: Relative accuracy results on all datasets with k = 1,2,3,4,5. We use Kneser1 as the baseline, and the relative accuracy
is calculated as the accuracy ratio to that of Kneser1. The error bars in the figure are the standard deviations over 5 trials. The
numbers in the bottom and the top of the figures denote the absolute accuracies for the Kneser1 and our RHOMP method
respectively. We see that our RHOMP has noticeable improvements over other methods in most datasets.

5.2 General Results
First we compare our RHOMP (m = 2) with other baseline methods

in terms of accuracy and MRR score.

MRR score. Table 2 depicts the results on the MRR score. In all

datasets, RHOMP has the highest score. From the table we see that

MC1 outperforms the LME method. The LME has the advantage of

embedding the states into Euclidean space for applications like vi-

sualization or clustering. However the embedding could potentially

cause information loss, making the prediction less accurate. And

we notice that MC2 has the lowest scores in many cases (i.e., Beer-

Advocate, Flickr and FourSQ datasets), and the MRR scores drop

compared to MC1. The Kneser-Ney smoothing modification makes

the MC2 estimate more robust, and in most cases outperforms the

MC1, although such advantage is limited compared to that from

our RHOMP method. The PITF method is also not competitive.

Accuracy score. Figure 2 shows the algorithms performances

in terms of relative accuracy. Many of the observations from Table 2

on the MRR score also apply here. In addition we find MC2 is often

able to provide one accurate output, so the relative accuracy (k = 1)

is actually quite good in most cases. However as k increases the

relative accuracy drops rapidly due to the fact that MC2 is not able

to generate a few more reliable outputs. This limits the application



Table 3: Algorithm runtime (in minutes) for the three large
datasets in terms of training time (left) and testing time
(right). The experiments are run on a single-core of a 2.5Ghz
Xeon CPU. Both MC1 and MC2 ran in under a minute.

Kneser1 Kneser2 PITF LME RHOMP

LastFM 2/4 3/75 493/1980 3188/57 52/2

BrightKite <1/1 <1/4 236/71 1153/22 3/1

Flickr <1/1 1/8 168/97 764/11 6/1

of MC2 because in the task of recommendation, it is important for

the algorithm to generate a few instead of one unique candidate

state. Another observation is that the results of PITF over different

trials are often more volatile because of its underlying stochastic

gradient descent solver. We also find that for some datasets (e.g.,

BeerAdvocate and FourSQ) the relative accuracies of our RHOMP

decrease as k increases. The reason is that as k increases, the pre-

diction task itself becomes easier, so it is hard to maintain the same

advantage (i.e., constant relative accuracy). This also explains why

methods like LME and PITF can catch up as k increases.

AlgorithmRuntime.Table 3 shows the runtime for eachmethod.

The RHOMP approach takes slightly more time to train than Kneser-

Ney methods, but has faster prediction and testing. It is slower than

the pure MC methods, but much faster than PITF, LME.

5.3 Analysis on Overfitting
One of the reasons we propose the RHOMP method is to improve

the higher-order Markov chain method in the aspect of overfit-

ting. In this section we analyze the results in detail and give an

explanation on the performances of different methods.

First we show the comparison between training and testing

performance in Table 4. We present the result using accuracy with

k = 3 as it is representative of the remaining results. Both PITF

and LME had the least overfitting effect as the testing and training

accuracies are very close. However, their testing accuracies are also

low. The training accuracy of MC2 is the highest for all datasets.

But these are often more than 10 times of the corresponding testing

accuracies. So MC2 is a highly overfitting method. Kneser2 also

has comparatively high training accuracy since it is a second-order

method and tends to fit the training data well. But the performance

on testing set is better than MC2 as it uses lower-order information

to smooth the output. The methods MC1, Kneser1 and RHOMP

have a good training and testing balance, and among them, our

RHOMP has superior testing performances.

Next we analyze the performance on individual states to help

understand the behaviors of different algorithms. We sort all the

states from high to low based on the total number of counts of each

state in the training set. Our aim is to look at how testing accuracy

correlates with these counts. Figure 3 shows the accuracy (k = 3)

comparisons (i.e., MC1 vs MC2 vs RHOMP and Kneser1 vs Kneser2

vs RHOMP) on the Flickr dataset based on counts of the states. We

aggregate small sets of states based on their counts into baskets

of at least 1000 transitions and 5 states. We find that all methods

show accuracy drops when predicting infrequent states, with MC2

being affected most. Here, RHOMP does the best out of all methods,

which reflects its ability to avoid overfitting.

5.4 Analysis on Higher-order Approaches
In the previous sections, we analyze the results for first and second-

order approaches. Now we study the behavior as the order varies.

Figure 4 shows change in performance as the order increases for

the three frameworks: MC, Kneser-Ney smoothing and RHOMP.

For the cases when the history states length is smaller than the

order, we use the approach with the correct order to generate the

prediction.

For the MC framework, higher-order approaches make the pre-

diction less accurate. This occurs because these methods overfit the

training data and there are more ways to overfit for a higher-order

chain. For the Kneser-Ney smoothing approaches, in most cases (ex-

cept BeerAdvocate dataset) there are improvements moving from

first-order to second-order. However the improvements are slight.

For order > 2, there are usually either no clear improvements or

small performance dips. The reason is that as the order increase, the

higher-order transition become very sparse, and could easily en-

counter an unseen higher-order state. So in this case the algorithm

will frequently seek the prediction from a lower-order approach.

For the RHOMP framework, there are improvements for each

dataset when moving from MC1 to RHOMP with order = 2, and for

order > 3, the results further improve. Compared to MC and Kneser-

Ney smoothing frameworks, The RHOMP is more robust in terms of

not decreasing the accuracy as order increases, with the exception of

BrightKite dataset. In BrightKite, the average trail length is around

3, so there is insufficient information to train higher-order models

and we lack the lower-order fallback in Kneser-Ney.

6 SUMMARY AND FUTUREWORK
In this paper we study the problem of modeling user trails, which

encode useful information for the downstream applications of user

experiences, recommendations and advertising. We propose a new

class of structured higher-order Markov chains which we call the

retrospective higher-order Markov process (RHOMP). This model

preserves the higher-order nature of user trails without risks of

overfitting the data. A RHOMP can be estimated from data via

maximum likelihood estimation (MLE) using a projected gradient

descent algorithm. In the experiments, we find that RHOMPs are

superior in terms of accuracy and mean reciprocal rank compared

to other methods. Also RHOMPs are robust for higher-order chains

when there is data available.

There are several directions to extend this work. First it would

be interesting to explore other forms of retrospection that allow

more interaction between the history states. (Note that the current

approach in this paper selects a single state during the retrospective

process). This will allow to model the case when certain combined

history states have strong evidence in terms of transition patterns.

Second it would also be useful to extend this framework in terms

of personalization. This can be achieved by a tensor factorization

approach or a collaborative filtering method. Lastly we also would

like to embed time information into our prediction either by mod-

eling the event time directly or using it as a side information to



Table 4: accuracy (k=3) results for testing set (the left number) vs train set (the right number) that we use to estimate overfitting.
Bold denotes the highest testing result. We judge the overfitting effects as {MC2, Kneser2} ≫ {MC1, Kneser1, RHOMP} > {LME,
PITF}. But LME and PITF have poor test performances.

MC1 MC2 Kneser1 Kneser2 PITF LME RHOMP

LastFM 0.092/0.216 0.087/0.961 0.068/0.109 0.094/0.792 0.056/0.061 0.062/0.083 0.108/0.218
BeerAdvocate 0.082/0.115 0.067/0.777 0.071/0.074 0.066/0.490 0.059/0.061 0.056/0.600 0.085/0.109
BrightKite 0.654/0.782 0.606/0.940 0.636/0.729 0.669/0.868 0.526/0.584 0.610/0.665 0.690/0.796
Flickr 0.428/0.496 0.374/0.832 0.399/0.440 0.432/0.710 0.352/0.373 0.384/0.401 0.477/0.530
FourSQ 0.145/0.199 0.133/0.778 0.147/0.174 0.155/0.524 0.126/0.140 0.104/0.137 0.188/0.241

counts of states
20000 1000 500  200  150  60   40   

ac
cu

ra
cy

 (k
=3

)

0.1

0.2

0.3

0.4

0.5

0.6

MC1 vs MC2 vs RHOMP
MC1
MC2
RHOMP

# counts of states
20000 1000 500  200  150  60   40   

ac
cu

ra
cy

 (k
=3

)

0.1

0.2

0.3

0.4

0.5

0.6

Kneser1 vs Kneser2 vs RHOMP
Kneser1
Kneser2
RHOMP

Figure 3: State-wise accuracy (k = 3) comparison on MC1 vs MC2 vs RHOMP (left figure) and Kneser1 vs Kneser2 vs RHOMP
(right figure) on the Flickr dataset. Eachmarker represents the average accuracy over a group of states. The curves are fit from
the scatter points based on Locally Weighted Scatterplot Smoothing (LOWESS).
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Figure 4: Relative accuracy (k = 3) vs order of the methods: MC, Kneser-Ney smoothing and RHOMP. The relative accuracy is
the accuracy ratio to that from MC1 of the corresponding datasets. Note that the y-axis may not be scaled linearly to make
the figures more clear.

help generate a non-stationary process where the random walk

behavior could change overtime.
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